
Midterm Review

ECE 469, Mar 11

Aravind Machiry

1

Midterm

● Online on Brightspace --- NO LOCKDOWN BROWSER
● Thursday, 13th March --- NO CLASS
● Time: 75 min
● Available Period: 7:30 am - 10:00 pm
● Topics covered till last Thursday (03/06/2025)
● Open notes

1. Power up.
2. BIOS initializes basic devices.

3. After initializing peripheral devices, it will put some initialization code to

a. DRAM physical address 0xffff0 ([f000:fff0])

b. Copy the code from ROM to RAM

c. Run from RAM

1. What does the code do? Load and run the boot sector from disk

b. Read the 1st sector from the boot disk (512 bytes)

c. Put the sector at 0x7c00

d. Run it! (set the instruction pointer = 0x7c00)
2

What happens, when we turn on
the machine?

Summary!

Low Memory
0x00000 ~ 0xa0000

(0 ~ 640KB)

VGA
0xa0000 ~ 0xc0000

(640KB ~ 768KB)

Devices
0xc0000 ~ 0xf0000
(768KB ~ 960KB)

BIOS
0xf0000 ~ 0x100000

(960KB ~ 1MB)

Map code in BIOS at
f000:fff0

Read Master Boot Record
(MBR)
from the boot disk
and load it at 0x7c00

Extended Memory
(Over 1MB)

Enabling Protected
Mode

Load kernel and
run!

4

A gap among Architecture,
Compiler and OS courses
main.c
math.c

main.o
math.o

a.out

Load a.out to mem
Manage mem for proc

Instruction
execution

compiler linker? loader

memory
management

arch

5

Virtual Memory
● Three goals

● Transparency: does not need to know system’s internal state
● Program A is loaded at 0x8048000. Can Program B be loaded at 0x8048000?

● Efficiency: do not waste memory; manage memory fragmentation
● Can Program B (288KB) be loaded if 288 KB of memory is free, regardless of its

allocation?

● Protection: isolate program’s execution environment
● Can we prevent an overflow from Program A from overwriting Program B’s data?

6

Paging!
● Idea: Make all chunks of memory the same size, called pages

● Both virtual and physical memory divided into same size chunks.

● For each process, a page table defines the base address of each of that process’
pages along with existence and read/write bits

7

Paging!

7

Virtual address

.

.

.

.
Virtual pages

physical pages

Physical memory

8

Page size / fragmentation

● If a page size is too small, it requires a big page table
● 1B, 4GB
● 4KB, 4MB
● 4MB, 4KB
● 1G, 16B

● If a page size is too big, unused memory in a page will be wasted
● 1B - 1B (no waste)
● 4KB – 1B
● 4MB – 1B
● 1G – 1B Design consideration:

Memory fragmentation matters!

9

Virtual Memory - Paging
Having an indirect table that maps virt-addr to phys-addr

Virtual Physical

0x8048000 0x10000

0x8049000 0x11000

0x804a000 0x14000

0xbffdf000 0x12000

… …

Stack
0xbffdf000

Program code
0x8049000

Program code
0x8048000

Program code
0x804a000

Program code
0x10000

Program code
0x11000

Program code
0x14000

Stack
0x12000

Physical Memory

10

Page Table
● We access page table by virtual address

● Page size: 4 KB (12bits)

● Page number: 20 bits

● What is the page number and offset of
● 0x8048000
● 0xb7ff3100

Page number Offset

01231

11

12

Caching!

● Cache the frequently used page table entries:
● Exploit locality

● Translation Lookaside Buffer (TLB)
▪ Cache for translation entries.

13

Translation Lookaside Buffer (TLB)

● Stores VA-PA mappings and caches them!

VPN (Virt Page Number) PPN (Phy Page Number) Valid

0x12345 0x0 1

0x12346 0x5 1

0x12347 0xff 1

0x12348 0xfff 1

0x12345678 -> 0x678

0x12346678 -> 0x5678

0x12347678 -> 0xff678

0x12348678 -> 0xfff678

14

Without TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x48 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x345 0x10000

0x346 0x11000

0x347 0x50000

0x12345000

15

Without TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x48 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x345 0x10000

0x346 0x11000

0x347 0x50000

0x12345000

16

Without TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x48 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x345 0x10000

0x346 0x11000

0x347 0x50000

0x12345000

17

Without TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x48 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x345 0x10000

0x346 0x11000

0x347 0x50000

0x12345000

0x10000000

18

With TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x20 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x48 0x10000

0x49 0x11000

0x4a 0x50000

VPN (Virt Page Number) PPN (Phy Page Number) Valid

0x12345 0x10000 1

0x12346 0x5 1

0x12347 0xff 1

0x12348 0xfff 1

0x12345000

18

19

With TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x20 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x48 0x10000

0x49 0x11000

0x4a 0x50000

VPN (Virt Page Number) PPN (Phy Page Number) Valid

0x12345 0x10000 1

0x12346 0x5 1

0x12347 0xff 1

0x12348 0xfff 1

0x12345000

0x10000000

19

20

With TLB

CPU

CR3

Page Directory
Entry

0 Addr PT

.. Addr PT

0x20 Addr PT

0x3ff Addr PT

Page Table Entry

0 Addr PT

0x48 0x10000

0x49 0x11000

0x4a 0x50000

VPN (Virt Page Number) PPN (Phy Page Number) Valid

0x12345 0x10000 1

0x12346 0x5 1

0x12347 0xff 1

0x12348 0xfff 1

0x12345000

0x10000000

No page table access..

20

21

TLB Performance
• TLB hit requires 4 cycles, 1ns!

• Page table walk requires 2 memory access for translation
• Uncached: 9 cycles + (42 cycles + 51ns) * 2

• [TLB miss] [RAM latency]

 2ns + (10ns + 51ns) * 2 = 124ns (124 times slower…)

• Cached: 9 + 4 * 2 = 17 cycles if all blocks cached in L1 (4 ns, 4 times slower!)

21

22

Page Directory / Table
● In x86 (32-bit), CPU uses 2-level page table

● 10-bit directory index

● 10-bit page table index

● 12-bit offset

● 2-level paging

Page number Offset

01231

Directory Index
(10-bits)

Table index
(10-bits)

122231

23

Size of Page Directory!
● Page Size = 4 KB

PDE 0

PDE 1

PDE 2

PDE 3

PDE …

PDE …

PDE 1022

PDE 1023

One page,
4KB

Each entry is 4-byte (32 bits)

4096 / 4 = 1024 entries

1024 == 210

10-bit index for PD

24

Size of Page Table!
● Page Size = 4 KB

PTE 1

PTE 2

PTE 3

PTE …

PTE …

PTE 1022

PTE 1023

One page,
4KB

Each entry is 4-byte (32 bits)

4096 / 4 = 1024 entries

1024 == 210

10-bit index for PT

25

Permission Flags

• PTE_P (PRESENT)
• 0: invalid entry
• 1: valid entry

• PTE_W (WRITABLE)
• 0: read only
• 1: writable

• PTE_U (USER)
• 0: kernel (only ring 0 can access)
• 1: user (accessible by ring 3)

Page Table Entry

0 Addr PT

0x48 0x10000 << 12 | PTE_U | PTE_W

0x49 0x11000 << 12 | PTE_P | PTE_W

0x4a 0x50000 << 12 | PTE_P | PTE_U

Invalid

Kernel, writable

User, read-only

25

26

Cannot have permissions such as …

• Kernel: RW, User: R
• PTE_P | PTE_W | PTE_U -> User RW…
• PTE_P | PTE _W -> User --

• Kernel: R, User: RW
• PTE_P | PTE_U | PTE_W -> Kernel RW…
• PTE_P | PTE_U -> User R…

• Kernel: --, User: RW
• PTE_P | PTE_U | PTE_W -> Kernel RW…

27

Struct PageInfo in JOS
• A one-to-one mapping from a struct PageInfo to a physical page

• An 8 byte struct per each physical memory page
• If we support 128MB memory, then we will create

• Total number of physical pages: 128 * 1048576 / 4096 = 32768

• Total size = 32768 * 8 = 262,144 = 256KB

• A linked-list for managing free physical pages
• Starting from page_free_list->pp_link…

•pp_ref
• Count references
• Non-zero – in-use
• Zero – free

28

Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
● Can many users launch the same program?
● Can one user launch many instances of the same program?

🡪 A process is an “instance” of a program

29

Program vs. Process

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Program

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Process

heap
stack
main
foo

registers
PC

Data
Code

30

Process State Transition

30

Running

BlockedReady

Scheduler

disp
atc

h W
ait for

resource

Resource becomes
available

Create
a process

terminate

31

OS Process API

● 4 system calls related to process creation/termination:

● Process Creation:
● fork/clone – create a copy of this process
● exec – replace this process with this program

● Wait for completion:
● wait – wait for child process to finish

● Terminate a process:
● kill - send a signal (to terminate) a process

32

fork

main()
{
...
foo()
...
I = fork()
}

foo()
{
 ...
}

 Process

heap

stack
main
foo

registers
PC

main()
{
...
foo()
...
I = fork()
}

foo()
{
 ...
}

 Process

heap

stack
main
foo

registers
PC

fork causes OS creates a copy of the calling process:
● Why?
● How can we disambiguate between new process and the calling process?

33

exec
Replaces current process with the content from new program.

// b.out

main()
{
}

 Process

 New Code
data
heap

New
stack

registers
PC

initialized

// a.out
main()
{
...
foo()
...
exec(“b.out”)
}

foo()
{
 ...
}

 Process

code
data
heap

stack
main
foo

registers
PC

34

wait
What happens when the parent process dies? what happens to child process?

35

Interrupts

● Hardware Interrupts

● Software Interrupts

36

Interrupts classification

Interrupts

Hardware
Interrupt

(Asynchronous)

Software
Interrupts/Exceptions

(synchronous)

Faults
(Recoverable)

Trap
(Handlable)

Abort
(Processor

errors)

37

Handling Interrupts

● Interrupts are numbered

● We need to define “what to do” (i.e., code to run) when an interrupt with
corresponding number occurs

38

Handling Interrupts

● Setting an Interrupt Descriptor Table (IDT)

Interrupt Number Code address

0 (Divide error) t_divide

1 (Debug) t_debug

2 (NMI, Non-maskable Interrupt) t_nmi

3 (Breakpoint) t_brkpt

4 (Overflow) t_oflow

…
8 (Double Fault) t_dblflt

…
14 (Page Fault) t_pgflt

... …
0x30 (syscall in JOS) t_syscall

39

JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

40

JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

41

JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

42

JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

43

JOS Interrupt Handling

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c
Build a
Trapframe!

44

JOS Interrupt Handling

44

Build a
Trapframe!

• Setup the IDT at trap_init() in kern/trap.c

• Interrupt arrives to CPU!

• Call interrupt hander in IDT

• Call _alltraps (in kern/trapentry.S)

• Call trap() in kern/trap.c

• Call trap_dispatch() in kern/trap.c

45

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

45

46

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

46

printf(“ECE469”)

A library call in ring 3

47

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

47

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

48

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

48

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0

49

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

49

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

50

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

50

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

51

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

51

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)

52

Invoking Syscalls

• Set all arguments in the registers
• Order: edx ecx ebx edi esi

• int $0x30 (in JOS)
• Software interrupt 48

• int $0x80 (in 32bit Linux)
• Software interrupt 128

53

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then

• int $0x30

• Now kernel execution starts…

Invoking Syscalls in User mode

54

Non-Preemptive Scheduling

Running

BlockedReady

Scheduler

disp
atc

h

Resource becomes
available

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

55

● Any issues?

● What if a process runs:

Non-Preemptive Scheduling

56

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum

• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)

57

Goals and Assumptions
● Goals (Performance metrics)

● Minimize turnaround time

● avg time to complete a job

● T
turnaround

 = T
completion

 − T
arrival

● Maximize throughput

● operations (jobs) per second

● Minimize overhead of context switches: large quanta

● Efficient utilization (CPU, memory, disk etc)

● Short response time

● T
response

 = T
firstrun

 − T
arrival

● type on a keyboard

● Small quanta

● Fairness

● fair, no stavaton, no deadlock

58

● Each runs a time slice or quantum: Fair

● How do you choose time slice?
○ Overhead vs. response time
○ Overhead is typically about 1% or less
○ Quantum typically between 10 ~ 100 millisec

Round Robin

Current
process

Ready queue

59

STCF
● Shortest time to completion first (shortest job first)

○ Non-preemptive

A BC

T1

C arrives

A arrives B arrives

60

SRTCF
● Shortest remaining time to completion first

○ Preemptive

A BC

T1

C arrives

A arrives B arrives

CC

Any potential problems?
 - Can cause starvation!

61

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

62

Priority Scheduling

● To accommodate the spirits of SJF/RR/FIFO

● The method
● Assign each process a priority

● Run the process with highest priority in ready queue first
● Use FIFO for processes with equal priority

● Adjust priority dynamically
● To deal with all issues: e.g. aging, I/O wait raises priority

63

Multiple Queue Scheduling

64

Multilevel Feedback Queue (MLFQ)

● Problem: how to change priority?

● Jobs start at highest priority queue

● Feedback
● Priority Decreases: If a job uses up an entire time slice while running, its priority is

reduced (i.e., it moves down one queue).

● Priority Unchanged: If a job gives up the CPU before the time slice is up, it stays at the
same priority level.

● Priority Increases: After a long time period, move all the jobs in the system to the
topmost queue (aging)

